Weighted Graph Laplace Operator under Topological Noise

نویسندگان

  • Tamal K. Dey
  • Pawas Ranjan
  • Yusu Wang
چکیده

Recently, various applications have motivated the study of spectral structures (eigenvalues and eigenfunctions) of the so-called Laplace-Beltrami operator of a manifold and their discrete versions. A popular choice for the discrete version is the so-called Gaussian weighted graph Laplacian which can be applied to point cloud data that samples a manifold. Naturally, the question of stability of the spectrum of this discrete Laplacian under the perturbation of the sampled manifold becomes important for its practical usage. Previous results showed that the spectra of both the manifold Laplacian and discrete Laplacian are stable when the perturbation is “nice” in the sense that it is restricted to a diffeomorphism with minor area distortion. However, this forbids, for example, small topological changes. We study the stability of the spectrum of the weighted graph Laplacian under more general perturbations. In particular, we allow arbitrary, including topological, changes to the hidden manifold as long as they are localized in the ambient space and the area distortion is small. Manifold Laplacians may change dramatically in this case. Nevertheless, we show that the weighted graph Laplacians computed from two sets of points, uniformly randomly sampled from a manifold and a perturbed version of it, have similar spectra. The distance between the two spectra can be bounded in terms of the size of the perturbation and some intrinsic properties of the original manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Molecular Descriptor Derived from Weighted Line Graph

The Bertz indices, derived by counting the number of connecting edges of line graphs of a molecule were used in deriving the QSPR models for the physicochemical properties of alkanes. The inability of these indices to identify the hetero centre in a chemical compound restricted their applications to hydrocarbons only. In the present work, a novel molecular descriptor has been derived from the w...

متن کامل

Constructing Laplace Operator from Point Clouds

We present an algorithm for approximating the LaplaceBeltrami operator from an arbitrary point cloud obtained from a k-dimensional manifold embedded in the ddimensional space. We show that this PCD Laplace (PointCloud Data Laplace) operator converges to the LaplaceBeltrami operator on the underlying manifold as the point cloud becomes denser. Unlike the previous work, we do not assume that the ...

متن کامل

A Graph Framework for Manifold-Valued Data

Recently, there has been a strong ambition to translate models and algorithms from traditional image processing to non-Euclidean domains, e.g., to manifold-valued data. While the task of denoising has been extensively studied in the last years, there was rarely an attempt to perform image inpainting on manifold-valued data. In this paper we present a nonlocal inpainting method for manifold-valu...

متن کامل

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in R with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in Rn with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013